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Abstract—This paper addresses failures near irregularities on the interface between a film and a
substrate. Several boundary value problems, including two-dimensional and three-dimensional
problems, involving inclusions of various shapes placed on the interface, are considered. The loading
is induced by the lattice parameter mismatch between the film and substrate. Stresses near the
interface and the inclusion boundary are of particular interest. The solutions show stress con-
centration around the inclusion boundary ; in fact, a logarithmic singularity exists at the intersection
of the inclusion, film and substrate. Emphasis is placed on identifying failures associated with high
stresses near the inclusion. A theoretical prediction of the misfit strain to cause adhesion failure is
obtained. The driving force for dislocation emission from the inclusion is calculated, and it is shown
that dislocation emission from inclusions is favoured under a sufficiently large misfit strain. © 1997,
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Thin films are widely used in electronic components and other advanced devices. Because
high residual strains in the films due to either thermal expansion coefficient mismatch or
lattice parameter mismatch between the films and substrates can cause device failures
related to dislocation nucleation and interfacial cracking, the study of these mechanisms is
a subject of interest. Many works addressing such problems can be found in the open
literature. Examples of recent development include solutions to a large number of interfacial
cracking problems by Hutchinson and Suo (1991), a detailed treatment for threading
dislocations in the thin films by Freund (1993), and solutions to various stress-related
problems in silicon technology, including film-edge induced stresses and dislocation gen-
eration in substrate due to these stresses, by Hu (1991).

The interfacial microstructure of a film/substrate system controls the performance of
the system in more ways than one. It appears that this aspect has been overlooked by many.
Recent experiments (Perovic ef al., 1989) have shown that §-SiC precipitates are formed
on the interface between the Ge,Si, _, layer and Si substrate by molecular beam epitaxy,
and dislocations emit from these precipitates when a critical particle size is reached. Also,
itis possible that the surface of the substrate is not a perfect plane, i.e., there are irregularities
on the substrate. Inclusions on the interface are sources of stress concentration, and
therefore are the possible sites for failure initiation. Besides dislocation nucleation, adhesion
failure occurs if stresses on the interface exceed its adhesion strength. In this paper, we
examine the stress concentration near these inclusions, and attempt to identify failures
resulting from these high stresses. For this purpose, an inclusion on the interface between
a thin film and substrate is considered, and the loading arises from the lattice parameter
mismatch between the film and substrate. In this study, we take the inclusion, film and
substrate as elastically deforming bodies, i.e., the problem is solved by elasticity theory.
The inclusion can be regarded as a local inhomogeneity. So, it is assumed that both the
thickness of the film and the substrate are much larger than the size of the inclusion. Under
these assumptions, we are able to obtain several analytical solutions for two-dimensional
and three-dimensional inclusion problems.
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The plan of this paper is as follows. In Section 2, the two-dimensional problem, an
elliptical inclusion on the interface between a film and substrate, is analyzed. This idealized
case admits an analytical solution with a relatively simple form which is obtained by
complex variable method. In Section 3, the stresses on the interface between the film and
substrate for the two-dimensional problem are examined. It is shown that high stresses are
generated near the inclusion; in fact, the shear stress has a logarithmic singularity at the
intersection of the inclusion, film and substrate. A theoretical prediction for the misfit strain
to cause adhesion failure is obtained. Section 4 addresses the bending effect due to the misfit
strain. The three-dimensional problem is solved in Section 5. Section 6 discusses dislocation
emission from the inclusion, where the driving force for dislocation emission is derived,
and it is shown that dislocation emission is favored for a sufficiently large misfit strain.

2. TWO-DIMENSIONAL PROBLEM: AN ELLIPTICAL INCLUSION

The mathematical problem shown in Fig. 1 is a film of thickness 4 bonded to the
surface of a substrate. At the origin, there is an elliptical inclusion on the interface between
the film and substrate. The major and minor axes are @ and b, respectively. The film has a
lattice parameter o, which differs from that of the substrate and inclusion, o,. The inclusion
and the substrate could have different lattice parameters, but this possibility is not con-
sidered here. The interface between film and substrate and the interface between film and
inclusion are assumed to be coherent, so that a stress field is induced in the film, substrate
and inclusion. Far away from the inclusion, its solution is known : the substrate is stress
free and the film is subjected to biaxial uniform tension or compression

2u,(1
L= 2mdtv) )
I—V1
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o, — 0o
== 2
&o % @

Both the film and substrate have shear modulus g, and Poisson’s ratio v,, while these elastic
constants for the inclusion are u, and v,. For the semiconductor layered systems, the
difference in elastic properties between the film and substrate is usually small ; it is neglected
here. As stated in the introduction, the film thickness is much larger than the inclusion size.

To solve the boundary value problem, one must match lattice parameters across the
interfaces between the film and substrate and between the film and inclusion. On the
interface between the film and substrate, there is a lattice parameter mismatch in the x and
z directions (the z axis is perpendicular to the x and y axes shown in Fig. 1); but on the
interface between the film and inclusion, there is a lattice parameter mismatch in all three
directions, x, y and z. The solution to the three-dimensional problem can be obtained by
considering two two-dimensional problems using an Eshelby-type superposition, as shown

;
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Fig. 1. A elliptical inclusion on the interface between a film and substrate.
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Fig. 2. A superposition scheme for solving lattice parameter mismatch problem.

in Fig. 2. First, we match the lattice parameters on both interfaces in the x and z directions,
stretching the film by &, in the x and z directions. The state of stress induced by this process
is a uniform biaxial stress, g,, = g,, = 6,. Next, a distribution of traction is applied to the
interface between the film and inclusion so as to free it from stress, Fig. 2(b). In this cut
and paste process, we have neglected the effect of Poisson’s ratio. The stretch of the film
induced a strain ¢,, = —2v,/(1 —v,)&; this strain reduces the lattice parameter in the y
direction of the film. We have also neglected the difference in the lattice parameters in the
y direction. These effects may be neglected if both the film and the substrate have the same
lattice parameter in the y direction and the Poisson’s ratio of the film is very small. We first
solve the problem shown in Fig. 2(b), then the problem for the mismatch in the y direction.

The problem shown in Fig. 2(b) may be solved using the complex variable method
(Muskhelishvili, 1953). Stress and displacement fields are generated by complex potentials
¢(&) and (&) such that:

Ot 0, = 2[¢" (&) +¢"(O)],
Oy — O+ 2iaxy = 2[505”(6) +y¢'(9)],
2uu+iv) = kp(&) — " (&) — ¥ (D), 3)

where & = x+iy; x = 3—4v for plane strain; k =(3—v)/(1+v) for plane stress. The
resultant force along the arc from ¢ = &, to £ = &, can be expressed as

Fo+iF, = i)+ &6 O+ @izt @)

The resultant force due to the traction acting on the inclusion boundary between ¢ = a
and ¢ = &;in Fig. 2(b) is

i (T4vy) _
Sy =TTy, =t Imé >0 o

0 Imé, < 0.

Using a conformal mapping, ¢ = R({ +m/{) with R =(a+b)/2 and m = (a—b)/(a+b), the
elliptical inclusion is mapped onto a unit circle. Then, continuity conditions on the interface
between the inclusion and matrix (the film and substrate) can be written as
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and || = 1. Here, ¢,({) and ¥,({) are complex potentials defined for the matrix, and ¢,({)
and y,({) are complex potentials defined for the inclusion.

The solution to the problem is the four potentials which satisfy (6). Also, ¢,({) and
¥1({) have to give a stress free state at z = oo. The detailed procedure to solve the problem
is given in the Appendix, and the solution to the elliptical inclusion is obtained in terms of
series. For a circular inclusion, the solution is a simple finite-term solution, which is given
by

1 2_
610 = C[ TR llog“—l}

Tk, +12xi t ¢ —1
k2 C in -1 (417, 1
Rt A Teri R CE VT
where
_ I'(+x,) C
4= T+x,)2T +x,—1) 2 ®

and I' = p,/u,. We shall not write here the expressions for ¢,({) and ¥,({) since the stress
fields in the film and substrate are our interest.

The solution for the elliptical inclusion can be obtained directly in following special
cases: I'=0, =1, and '=o00. For ' =00 (rigid inclusion), the solution is
1) = d0) = Y, ({) = ¥2(0) =0. When I = 1, the problem corresponds to a traction
o,dy/ ds (ds is the differential arc length of the boundary of the ellipse) acting on the upper
boundary of the ellipse in a homogeneous body. Its solution can be readily obtained by
integrating a point force solution over the upper boundary of the inclusion. Similarly, for
I' =0, the solution can be obtained by integrating a point force acting on the upper
boundary of the elliptical hole.

A step irregularity on the substrate surface shown in Fig. 3 gives rise to a similar
problem. As before, both the film and substrate have the same elastic properties; there is
no lattice parameter mismatch in the y direction, and the Poisson’s ratio of the film is very
small. The solution to the problem is obtained by the integration of a point force solution
over 0 < y < a with the point force being ¢,dy. The two potentials are given by

$1(¢) = 5~ [({—ia) log(¢ —ia) — log ],

2 1(1+)

Vi) = — 5 (¢ —ia) log(¢ —ia) — {log &] + s —————¢[log({ —ia) — log £].  (10)

2n1(l+ K) 2 (1+ K)
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Fig. 3. A step irregularity.

We next solve the problem for the mismatch in the y direction. We view the problem
as the one similar to Eshelby’s internal problem, by assuming that there is a uniform
eigenstrain in the upper half of the inclusion (the portion above the interface between the
film and substrate) &}, due to the mismatch in the y direction. The eigenstrain is

s;y=go<1+2 d ) 1)

l_vl

The term involving v, represents the effect of the Poisson’s ratio v, in the cut and paste
process discussed before, and the rest represents the effect of the difference in lattice
parameters in the y direction. If there is no lattice parameter mismatch in the y direction,

e =2, 12)

The mathematical problem can be formulated by the compiex variable method, see List
and Silberstein (1966). The continuity condition on the interface between the inclusion and
the matrix is the same as (6), except in this case the right side of the first equation is g()
and that of the second equation is zero. Here,

*
.

g0 =12 R(1 —m)(t—%) Imz >0

(13)
0 Imz < 0.

This shows that the problem can be solved in the similar way as that in the Appendix. The
two potentials for a circular inclusion are given by

_ I wmeyR[ | in g-1 [+1
P O= "t 2m [ I ’Ogc_1]’
__ U mepRl w01 (1] 11
O =~ oa [ 24T+ logC—l] $iQp Ay, (14
where
Al = I-‘(14—,("2) ﬂlg;‘yR (15)

C T+x)Q@T+x,—-1) 2

Finally, we mention that the analysis for the mismatch in the y direction is the first order
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approximation since we assume a uniform eigenstrain in the inclusion ; in the real case the
eigenstrain appears to be more complicated.

3. STRESSES ON THE INTERFACE BETWEEN THE FILM AND SUBSTRATE

Having the solution in Section 2, we examine the stresses on the interface between the
film and substrate near an inclusion. For the most part of this section, we assume that the
film and the substrate have the same lattice parameter in the y direction and the Poisson’s
ratio of the film is small, so that the solution for the problem shown in Fig. 2(b) is a valid
solution. For a circular inclusion, the shear stress on the interface is

g 1 6 3—p> p+l
O'xy(p’o)— _4nl+Fx1(~ p3 + p4 lng_l

p+1)
+ log—— ), (16
ot T O, )

+00 K z 1+p?
4n T +x,

where p = x/a, and is either greater than 1 or less than — 1. It has a logarithmic singularity
at the intersection of the film, substrate and inclusion, p = + 1. The singular term is

_aof K, 1 p+1
""y(”’o)"zn(rﬂz 1+Fx1)logp—1 (17)

as p — +1. The expression before the logarithmic function in the above expression is a
logarithmic stress intensity factor, which varies with I', , and «,. For fixed x; = x, = 2.6
(plane strain with v, = v, = 0.1), the logarithmic stress intensity factor is the largest when
I' =1, and it vanishes when I' = 0 (hole) and T" = oo (rigid inclusion). The singularity is
so weak that its zone of dominance is very small. This can be seen from Fig. 4, where (16)
is plotted for several I'’s. In this figure, the shear stress for I' = 0 is larger than the shear
stress for I' = 1 except the very small portion near p = 1. Also, the shear stress decreases
quickly to zero, and its effective zone is about 34 times the size of the inclusion.

To examine the geometrical influence of the inclusion, the shear stress caused by an
elliptical inclusion is plotted in Fig. 5 for several values of b/a, where we choose I' = 1 and
Ky = K; = 2.6 (plane strain with v, = v, = 0.1). It shows that g,, increases as b/a increases.
This is because the mismatch increases as b/a increases. Also, the shear stress decays more
quickly for smaller b/a.

An inclusion on the interface between the film and substrate can generate high shear
stress. When the inclusion and matrix have the same elastic properties, I' =1 and
K1 = K, = 2.6 (plane strain with v, = v, = 0.1), the shear stress at a distance 0.1a ahead of

0.0 1.0 ' 20 ' 3.0 4.0 5.0

Fig. 4. Shear stress on the interface between the film and substrate near a circular inclusion.
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Fig. 5. The effect of inclusion geometry on shear stress.

the inclusion (the shear stress is singular at the intersection of the film, substrate and
inclusion) is

., = 0.236, (18)

for a circular inclusion. Consider growing a GaAs film on Si substrate, and neglect the
difference in elastic properties between GaAs and Si. For these materials, ¢, = —0.04 and
EGaas = 85 GPa. Then, (18) gives 6,, = —0.9 GPa.

Near a circular inclusion, the normal stress on the interface between the film and
substrate is

O, 0) = o — T — 19

where p = x/a, and is either greater than 1 or less than — 1. We note that it does not have
a singularity as does 6,,. For I = 1 and k, = k, = 2.6 (plane strain with v; = v, = 0.1), the
maximum normal stress which occurs at p = +1is

g,, = —0.10,. (20

If & < 0, the normal stress is a peeling stress. The above expression shows that a large
compressive residual strain gives a large peeling stress on the interface, which is a driving
force for adhesion failure of the interface. If & > 0, it is a compressive stress. For the
GaAs/Si example, the maximum peeling stress is 0.4 GPa. Figure 6 shows g, vs p for
several values of I'.

2.0 L] 1] L L
00 [ =l[
e 20F =05 J
>
b
g 40 | .
r=0
60k b/a=1 b
800 T0 20 30 40 50
x/a

Fig. 6. Normal stress on the interface between the film and substrate near a circular inclusion.
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Fig. 7. Comparison of shear stresses near a circular inclusion and near a step irregularity, on the
interface between the film and substrate.

Near a step irregularity, the shear stress on the interface between the film and substrate
is

0y 1 1—-x 1
0,,(p,0) = u(l+x)[p2+1 -2 log(1+ pz):l’ (21)

where p = x/a, and p > 0. The shear stresses on the interface near a step irregularity and
near a circular inclusion are compared in Fig. 7. As expected, it shows that the step
irregularity produces larger shear stress on the interface.

If there are no inclusions and step irregularities on the interface, there are no stresses
acting on the interface. Therefore, adhesion failure may not occur. If the residual strain ¢
in the thin film causes adhesion failure due to inclusions or step irregularities, we estimate
it from above solutions. Suppose that the interfacial adhesion strength, i.e., the summation
of all atomic bonding forces between the adjoining material surfaces for an ideal planar
interface, is known, and let the critical normal stress be o, and the critical shear stress be
7. Then, from (18) and (20), the mismatch stress o, to cause adhesion failure is given by
the smaller of

loo| = 4.351,,
loo} = 100, (22)

for compressive g,. For tensile o, this prediction is
g, = 4.351,. (23)

In writing (22) and (23), we have assumed that adhesion failure caused by shear occurs at
a distance 0.1a ahead of the inclusion. Besides calculating atomic bonding forces, the
interface adhesion strength can be measured by a number of methods which have been
discussed in Alexopoulos and O’Sullivan (1990). Due to the difficulty in handling these
tests, the data obtained by these methods are usually considered to be qualitative in nature.
It is seen that either a large residual strain or poor interface bonding could lead to
adhesion failure. In the GaAs/Si example discussed above, the film is subjected to com-
pressive residual stress and the normal stress on the interface is a peeling stress. If we
assume that the failure mode is the adhesion failure by the peeling stress, the criterion
predicts that the adhesion failure occurs if o, is less than 0.4 GPa. The development of the
initial failure could lead to large scale fracture, such as film buckling. The mechanics of
film buckling has been studied by Evans and Hutchinson (1984), and the cracking and
buckling processes of a film/substrate system have been characterized in terms of the
behavior of the film and substrate, and the interface bonding by Evans ez al. (1988).
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The effect of the mismatch in the y direction can be estimated using the solution for a
circular inclusion given by (14) and (15). The shear stress on the interface between the film
and substrate near the inclusion is

_me, T (6 3-p* p+l
Tx(p0) === _1+1“x1( IR log =7
wmey, T (2 1+4p° p+1
o F+x1< p+ pE logp_1 , (24

where p = x/a, and is either greater than 1 or less than — 1 ; the normal stress is

, T 1 3per, T 1
€ - -
YA+, —1 p2 2 1+Tk p*

O-yy(pa 0) =l (25)

We examine the effect of the Poisson’s ratio using (12) for &},. Since the stresses are
proportional to the Poisson’s ratio v,, they can be neglected if the Poisson’s ratio is small.
The larger the Poisson’s ratio, the larger its effect on the stress field. Few numerical examples
for the stresses are given below when v, is small, by taking ' = 1 and k, = x,. At p=1,
the normal stress is 0.006 o, for v, = 0.01, and 0.06 g, for v, = 0.1. At p = 1.1, the shear
stress is 0.001 o, for v, = 0.01, and 0.01 &, for v, = 0.1. It appears that the normal stress is
larger than the shear stress for the mismatch in the y direction.

4. BENDING EFFECT

If the film and substrate have finite thicknesses, the solution described in the preceding
sections must be corrected. Four self-equilibrating bending moments are applied to the film
and substrate, and two of them in the x-y plane are shown in Fig. 8. We assume the
thickness of the substrate 4, is much larger than that of the film 4, and the thickness of the
film is much larger than the size of the inclusion R =(a+#5)/2. The magnitude of these
bending moments depends on the thicknesses of film and substrate, and is given by

M = Shhyo,. (26)

These bending moments act at a distance 4,/2 from the bottom of the substrate. ForI' =1
and k, = k,, M does not cause shear and normal stresses at the interface between the film
and substrate, and the stress and strain fields in the film and substrate are given by beam
theory. For I" # 1, the bending moments induce stresses at the interface, which we calculate
as follows.

Note that the two moments in the x direction do not cause stresses on the interface if
the inclusion and the matrix have the same curvature in the y-z plane (the z axis is
perpendicular to the x and y axes shown in Fig. 1). Consequently, it is only necessary to
consider the deformation caused by the two moments shown in Fig. 8. If we use the
displacement field of a homogeneous problem (I' = 1, k, = k,) as a solution to the inhomo-
geneous problem there is a traction jump on the inclusion boundary. The solution may be

h

T SSSS——
M< . >M

Fig. 8. Bending moments acting on the film/substrate system.
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corrected by superposing an equal and opposite traction jump on the inclusion boundary.
The traction jump, expressed as a resultant force on the inclusion boundary, is

1
g(t) = ic;t* +ic; — —2ie; +et—c5—,
7? T

1

M
=§R2(1—'n)2(1-°1“)7,

€y

Mh;
2I°

;= —%R(l—m)(l—l") 27

where I = (h,+h)*/12. For simplicity, we have taken x, = «, to derive (27). When A, — oo,
g(1) =0, which states the fact that a substrate with infinite thickness does not induce
bending curvature. The function g(r) plays the same role as that in Section 2, so that the
solution can be obtained by the same way as that in the Appendix. For a circular inclusion,
the solution is

$:(0) = —I—(icl !, 1),

I'k+1 e {
k . 1 1-x 1 1,
Vi) = —mlclgg—mczz—zdh(f), (28)

where k = k; = k,. Then, the normal and shear stresses on the interface between the film
and substrate near the inclusion are

3Rh 1 6p*~8 k2
”*y(P’O)—4hg“°(“r)(rx+1 okl +Kp3),

3h 1 3 l-x 1
5 (p,0) = —z—hsa.,(l—r)(wr1 TR ;;). 29)

The condition, A, A, > R, must be satisfied for the solution to be valid as explained at the
beginning of the section. The normal stress is in compression for a soft inclusion (I" < 1),
and the shear stress is proportional to a coefficient in (29), i.e.,

5 (p,0) ~ i’:" . (30)
Suppose that
h, > 10h > 1000R, 31
we have from (30) that
0(0,0) ~ o055, 32)

The shear stress may be neglected.

5. THREE-DIMENSIONAL PROBLEM

In general, the problem of an inclusion on the interface between the film and substrate
is likely to be a three-dimensional problem. The analytical solution to a three-dimensional
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Fig. 9. Three-dimensional problem.

inclusion problem is difficult and available solutions can be found in Mura (1987). In this
section, by assuming that the elastic properties of the inclusion, film and substrate are the
same, we find an exact solution to the three-dimensional inclusion problem for the case
that the loading is lattice parameter mismatch between the film and substrate. As before,
we assume that the film thickness is much larger than the size of the inclusion.

The three-dimensional problem can be decomposed into two problems. One represents
the lattice parameter mismatch in the x and y directions, and the other represents the
mismatch in the z direction (the x, y, z axes are shown in Fig. 9, and the film thickness
direction is designated as z). As in Section 2, we shall assume that there is no lattice
parameter mismatch in the z direction and the Poisson’s ratio of the film is very small. In
other words, the mismatch in the z direction can be neglected. Following the argument
given in Section 2, the solution to the three-dimensional problem can be obtained by
integrating a point force solution over the inclusion boundary. To do this, we write the
solution of a point force in the following form

k

P
O{Fj(xay7z) = méfj(x_xo,y—)%,z—zo)a (33)

where indices i, j and k vary from 1 to 3, designating the x, y and z in turn; P* is a vector
force in the k direction. The function 6%, has the dimension 1/[length]®>. Equation (33)
represents the stress field due to a point force in the direction k acting at (x, ¥y, 2¢). The
stresses induced by an inclusion or a step irregularity can be written as

0o X
0,(x,y,2) = m[ﬁxwowes Gy (x—Xo, y—Yo,2—20) dS

+J nyd-izj(x_xmy_yo’ z—2zy) de|» (34
(xp.¥p,20)ES

where S is the inclusion boundary that is surrounded by the film, or the vertical part of the
step irregularity, and n =(n,, n,, n,) is the unit outward normal to the inclusion boundary
at (x¢, Yo, 2o)- For the two normal stresses parallel to the interface between the film and
substrate, o,, and g,,, the residual stress o, has to be added to obtain the total stresses. The
two surface integrals in (34) can not be evaluated analytically for an arbitrary inclusion
shape. They cannot even be evaluated exactly for some simple shapes like a sphere. However,
the surface integrals can be reduced to line integrals to simplify them in many cases. Two
examples will be given below.

The first example is a corner step irregularity, as shown in Fig. 10. The corner step
irregularity occupies the region, x <0, y < 0 and 0 < z < a. Note that, if we extend the
above step irregularity region in the y direction and let it occupy x < 0, —o0 < y < o0 and
0 < z < q, it becomes the two-dimensional problem which was solved in Section 2. The
purpose of this example is to examine the effect of a corner on the stress distribution. In
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Fig. 10. A corner step irregularity.

this case, the integrations in (34) can be evaluated analytically. The two shear stresses on

the plane z = 0 are given by
2

g

0 ay a
axz(x’y’o) = - +
8n(1—v) (% +a?) /x2+y2+a2 x2 + a2
y+yx+y +a
+(1—2v)log \
y+/xF+y’

o

5 2
. a’x a
ayz(xsy’o) - 87[(1_")[_ (y2+a2)\/m+y2+a2

2 2 2
+(1—2v)log iy X 4y +a ] (35)
x+/x*+y?

The shear stress o,, in (35) has a logarithmic singularity on the straight line, x = 0 and
¥ <0, as in the two-dimensional case. The corner introduces a stress o,,, which is zero in
the two-dimensional case. Far away from the corner, its influence vanishes so that o,,
approaches zero as y — + . A plot of ¢,, vs y when x = 0.01a is given in Fig. 11. We
observe that the o, is negligible for |x| > 5a. On the other hand, g,, approaches the two-
dimensional solution given in Section 2 as y — — 0, and vanishes when y — + co. The

variation of g,, along the y axis when x = 0.01a is also shown in Fig. 11. The two shear
stresses at y = 0, z = 0 are given by

_ 09 a X +d’
0..(x,0,0) = Sn(l—v)(x2+al +(1=2v)log - ),

2
6o a
O’yz(X,0,0) - 87[(1—V)(\/x2+a2(x+\/x2+a2)

0'0-5.n 25 0.0 25 5.0

y/a

Fig. 11. Shear stresses near a corner step irregularity.
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x+./x?+a?
+(1—2v) log———T) (36)

for x > 0. Comparing o,,(x, 0,0) with ¢,.(x, — 00, 0), we see that there is a simple relation-
ship between them,

axz(x: —CD,O) = ZUXz(xa 0’ 0) (37)

This tells us that by traveling from y = — oo to y =: 0, g,, reduces to half of its value at
y = — oo, and g,, rises from zero to the one given in (36). Also, we have another relationship,
a'i,(x, 07 O)+6§z(x’ 07 0) < alz(z(xy —CD,O) (38)

for x > 0. This says that on the interface between the film and substrate the total shear
stress at (x, 0, 0) is less than the total shear stress at (x, — o0, 0), because the corner relieves
stress concentration.

The second example is a circular plate above the interface of the film and substrate, as
shown in Fig. 9. Both the thickness and radius of the circular plate are a. The axisymmetry
of the problem renders o,, (7,8 and z are used instead of x, y and z) is the only nontrial
shear stress, which on the interface is given by

6,.(r,0,0) = —%V—)J‘ (r—acos6)(rcos8—a)
0

x[ 1 - l ]dﬂ
(r* —2arcos 0+24*)**  (r* —2arcos8+a®)*?

bl kd )(1—zv)rcos0[ !

T dn(l—v 0 (r* —2arcos 8+ 2a*)"?

1
_ ]do, (39)
(r* —2arcos0+a*)'"?

after evaluating the integrals in (34) along the z direction. Further derivation shows that
the line integrals in above expression can be written in terms of elliptical integrals. The o,,
has a logarithmic singularity at r = g, and a plot of ,, vs r is shown in Fig. 12.

We can also give the expressions for other stress components in the above two examples
by evaluating the integrals in (34). The inclusion shape has a strong effect on the
stresses near the inclusion. For the circular plate, 4,,(1.1a,0,0) = 0.1860, and o,

PU S Y A e
0'oo.o 1.0 2.0 3.0 4.0 5.0

r/a
Fig. 12. Shear stress near a circular plate inclusion.
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(a,0,0) = —0.020,, whereas for the two-dimensional circular inclusion in Section 2, the two
stresses on the interface between the film and substrate are 0.236, and —0.14,, respectively.

6. DISLOCATIONS IN THIN FILMS

Over the past few decades, the so-called threading dislocations which form in epitaxial
layers used for semiconductor materials have received attention. Threading dislocations
occur when the thickness of an epitaxial layer reaches a critical value. The critical thickness
has been treated by a number of authors, including Matthews and Blakeslee (1974), People
and Bean (1985) and Freund (1990). But the mechanism responsible for forming such
dislocations has not yet been fully understood. Eaglesham ez al. (1989) have discussed the
diamond defect as a source for dislocation nucleation. Dodson (1988) has argued that
the stress concentration around clusters of impurity atoms is a good source to generate
dislocations. The experiments by Perovic et al. (1989) have shown that, for films grown by
molecular beam epitaxy, there are precipitates on the interface between the film and
substrate, and V-shaped threading dislocations are emitted from the heterogeneous particles
if their size exceeds critical value, while particles below the critical size are coherent with
surrounding matrix. Among the two types of heterogeneous precipitates on the interface,
it was found that §-SiC precipitates tend to generate dislocations, whereas SiO, precipitates
are dislocation-free (Hull, 1986) because they are in an amorphous state which eliminates
misfit strains. In this section, we consider these observations in the light of our solutions to
the state of stresses near inclusions in strained layer systems.

We examine the shear stress, which provides the glide force for dislocation motion, on
possible slip planes around the inclusion. Two representatives of the slip planes shown in
Fig. 13 are chosen for the two-dimensional problems (circular inclusion and step irregu-
larity) whose solutions have been obtained in Section 2. The orientation of these slip planes
is chosen here to form the angle, # = sin~"' (1 /\ﬁ), with the interface between the film and
substrate. We neglect the difference in elastic properties among the inclusion, film and
substrate. Figure 14 shows the shear stress for the circular inclusion, where r/a is the
distance from the inclusion ; it has the same trend for the step irregularity. The shear stress
at the inclusion boundary on slip plane #1 for the step irregularity has a logarithmic
singularity, and for the circular inclusion it is nearly twice as large as that far away from
the inclusion, the homogeneous solution. The high shear stress state provides a good
condition to generate dislocations. The shear stress on slip plane #2 is somewhat different
from slip plane #1. Although there is a logarithmic singularity at the inclusion boundary,
the shear stress changes sign at a distance very close to the inclusion, and increases to the
homogeneous solution as the distance increases. The shear stress near the inclusion on any

Slip plane #1
Slip plane #2

Slip plane #1

I/ Slip plane #2

Fig. 13. Two possible slip planes which intersect the circular inclusion and the step irregularity.
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0.8 T T T —
06 F Slip plane #1 y
Yoaf ]
Slip plane #2 ]
0.2 J
0‘0 B i L | .
0.0 1.0 20 3.0 4.0
r/a

Fig. 14. Shear stress near the circular inclusion on the two slip planes shown in Fig. 13.

slip plane, which is between slip planes # 1 and #2 and is parallel to these two slip planes,
is less than that on slip plane #1.

If the inclusion is admitted as a source for dislocation nucleation in a thin film, the
driving force for the emitted dislocation can be derived as follows. The energy dissipation
associated with the dislocation motion is expressed as

W(S) = — % J a,!;n,.b,.ds—f ofnb,ds, (40)
S S

where S is the glide plane; #; is the outward normal of the left portion of the film divided
by the slip plan; the Burgers vector b; is the displacement of the ieft side of the glide plane
minus that of the right side of the glide plan. In the expression, the stress field o7, is due to
the dislocation, and 67 is due to the applied load, namely the lattice parameter mismatch.
Define the driving force G from the time rate of the energy dissipation as

W(S) = G, (1)

where v the speed of the emitted dislocation. The driving force is derived in the same way
as that in Freund (1990) for threading dislocation, and is given by

= —Zab(A)nb,—al(B)nb,, 42)

where ¢2(A) and oj(B) denote the corresponding stresses at the inclusion boundary and
the position of the emitted dislocation, respectively. Note that since the difference in elastic
properties between the inclusion and the matrix is neglected, there is no image force due to
the mismatch of elastic properties acting on the dislocation. The first term in (42) can be
calculated from the solution of a dislocation in a infinite body, and the second term can be
calculated from the solution obtained in Section 2. We finally obtain

G 1 b/r\™' 200+ r
E=_4n(1—v)5<2> Ty el (Z) “3)

where r is the distance between the dislocation and the inclusion boundary, a is the size of
the inclusion, b is the magnitude of the Burgers vector, and 7(r/a) is a nondimensional
function obtained from the stresses o7}(B). Given the inclusion size, the magnitude of the
Burgers vector and the misfit strain, the distance from the inclusion at which G =0
(equilibrium point), namely r*, is determined from (43). For r > r*, G > 0; for r < r*,
G < 0. If the dislocation is formed at the distance less than r* from the inclusion, it will be
driven back to the inclusion boundary ; otherwise, it will be emitted. We take the circular
inclusion as an example, and consider slip plane #1. For b= 0.4 nm and & = 0.04,
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r* =0458 nm if a=100 nm; r* =0.473 nm if ¢ = 10 nm; r* = 0.673 nm if ¢ = 1 nm.
When ¢, is increased to 0.06, r* is 0.305 nm, 0.311 nm and 0.415 nm for the above three
cases, respectively. The larger the misfit strain and the inclusion size, the smaller the critical
distance r*. When r* is less than the core cut-off radius, we have the case that the dislocation
formed at the inclusion boundary is emitted spontaneously (see Rice and Thomson (1974)
for dislocation emission from a crack tip). The numerical results here show that dislocation
emission is favored for large misfit strain. For inclusions in shapes other than the two we
have treated here, the driving force may be obtained in the same manner. Zhang and Yang
(1994) have studied the process of dislocation emission from a spherical cavity on the
interface between the film and substrate.

7. CONCLUDING REMARKS

Solutions are presented for several boundary value problems involving various shaped
inclusions located on the interface between a thin film and a substrate. The film and the
substrate have different lattice parameters. The solutions exhibit stress concentrations
around the inclusions. There is a logarithmic stress singularity at the intersection of the
film, substrate and inclusion. Moreover, the shear stress around the inclusion can be nearly
twice as large as the remote field given by the homogeneous solution. High stresses around
inclusions and on the interface between film and substrate could cause dislocation nucleation
and adhesion failure. A theoretical prediction of the misfit strain to cause adhesion failure
is obtained. The driving force for dislocation emission from the inclusion is calculated, and
it is shown that dislocation emission from inclusions is favored for sufficiently large misfit
strain. The results suggest that small inclusions (compared to film thickness) on the interface
between a film and a substrate can be the sources for failure initiation in the layered system.
These failures can be precursors to failures on a larger scale : adhesion failure can lead to
film buckling ; and dislocation emission eventually causes threading dislocations as shown
by Zhang and Yang (1994) for a spherical cavity.
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APPENDIX

After the conformal mapping, the two potentials for the matrix, ¢,({) and ¥,({), are analytical outside the
unit circle |{| = 1, and admit the forms,

a,

¢1(C)=? C—+
1 b2
(@)= 7 M (A
¢

The two potentials for the inclusion, ¢,({) and ¥,({), are not analytic inside unit circle, and are expressed by
Laurent series,

$:2(0) = ¢2:(0+022(), ¥2(0) = ¥ (D) +¥22(0), (A2)
where
1
Q) =cotal+al+ -, ¢ = C—lz‘*‘c—z‘;_z‘l' Tt
U = dy AL+ U =d g +d_zgi2 T A3)
The following relations hold because of the mapping,
$21 (%)—m]«» = 6200,
m
'ﬁu (E)—Wzn(o) = l//n(l)- (A4

Taking the integrations, (1/2xi) Ll /(t—{) dz, where |{| > 1 and y denotes the unit circle |{| = 1, on (6), we
obtain

4, (4)+¢n(¢)+€(c+ )52.() PG
“

b=+ ()60 0) = 10,
C+ﬁ
Ky 1 C+m (1
SO+ 36220 pre— (c)
1 1+ 1 1+
2;422:( Fa S -5 ’"C T
\/r? Jm
1 - /1 1
- g (E)* Fin©@ =0, A9
where
g9(@)
9} = 2m Cdr. (A.6)

The same integrations on the conjugates of the two equations in (6) give

_{+mg?)

o g0+ g - Fu@+ [C \/—d’zl(\/_)"' \/_dm(\/ m|

—m

e ) 4@+ 920 = :0)
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1 {Q+ml®) e K + I\ x .
_—451({)"’2”l 1(()"'%4’21(?)—%4’21(0)

2 Cz_
L 1dm Fan(/— )] 1“”_"’4 $nn 0~ 2W22(Q=0, A7

*2752[4\/’

where

21 +
'“‘ﬂcf

G (A8)

gz(C)—EJ 7

The following equation is obtained by (A.5.1) —(A.5.2) x 2u,/x,,

1 1Kz 1 1
s g B (/) + ——— (/)
C—7—; £+ﬁ

m{(* +m) MKy —
”—¢ 2(ml) + 5 (ml) = mgl(i)- (A9)

1 —m

Similarly, (A.7.1)+(A.7.2) x 2u, gives

gt — e~

Mkatih o om0+
H2— (—— (+—=
N 7

AL D) V() =
mi?—

& (m)).  (A.10)

In obtaining (A.9) and (A.10), we have made use of (A.4). Also, we have replaced the variable { by m{ in (A.10)
By (A.9) — (A.10), an ordinary differential equation for ¢,({) is obtained,

Kyt Ky — Ky e ¢ . (C)
+— 1—m?)y— == s All
o — Q; 1(9) 12 + 1y ‘522(’" ) ( )m2 %2 m a ( )
where
_ oKy — { {
- _ A.12
10 2Ky +#1 (m ) M2 — Ill ( ) ¢ )
Using (7), we evaluate the integrals in (A.6) and (A.8) to obtain
—Ku; C nim* (P —m® C+m2)
= -2 + log=——
L e
u, C nim (P—m® +m
— - — A.13
—ulzni( ¢t B m A1
Generally, the solution for ¢5,(() in (A.11) is expressed in terms of series. We write
x 1
9O =Y fi—s
=1 ("
(A.14)

& 1
$22(0) = Zl an E »

where f, (n=1,2,...) are the known coefficients from the series expansion of (A.13). We obtain ¢»({) by
substituting (A.14) into (A.11) and comparing the coefficients of both sides
By (A.5.1) + (A.5.2) x 2p,, the potential ¢,({) is obtained as

ml+es) .

6 ()= m 9.+ woter

(A.15)

Similarly, (A.7.1) 4+ (A.7.2) x 2u, gives
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"o = - a0~ c{ ¢(o+"‘“+"2)$ (m0). (A16)

Evaluating the integrals in (A.15) and (A.16), we have the final result,

C in {*— (+1 1+, C (Pym+P)m 1 1+x, 2C 2 o 1
2+— — = < wm—,
¢ @)= T, +12m[ + { + 4 logc 1]+FK.+1 2P,+P2m2+1—mzc Ik, +1 =i = ‘azm o
c in =1 {+1
00 =y -2+ 7+ e
+m 1+x, C P;m+ P, 1 l+rc 2C &
Sl g il Bmihy) L be2C5, 1w
{r—m I:'|+P2mz-}-l—mzc - mi = g
where I = p,/p, and
_ 2(1 —m*)nm* = (P, + P,m*") P P,) 1 ,
(P + P,m*")? —4n* (1 —m*)*m* 2 4n? —1
_T'+x, P = Tk, —x,
Tr—-1 " I +1°
Ik, r
P“rx1+1’ Po=v a1

The two potentials for the inclusion, ¢,({) and ¥,({), can also be obtained.



